# Ordered prime spectra of bounded $DRl$-monoids

Mathematica Bohemica (2000)

- Volume: 125, Issue: 4, page 505-509
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topRachůnek, Jiří. "Ordered prime spectra of bounded $DRl$-monoids." Mathematica Bohemica 125.4 (2000): 505-509. <http://eudml.org/doc/248670>.

@article{Rachůnek2000,

abstract = {Ordered prime spectra of Boolean products of bounded $DRl$-monoids are described by means of their decompositions to the prime spectra of the components.},

author = {Rachůnek, Jiří},

journal = {Mathematica Bohemica},

keywords = {$DRl$-monoid; prime ideal; spectrum; $MV$-algebra; -monoid; prime ideal; spectrum; MV-algebra},

language = {eng},

number = {4},

pages = {505-509},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Ordered prime spectra of bounded $DRl$-monoids},

url = {http://eudml.org/doc/248670},

volume = {125},

year = {2000},

}

TY - JOUR

AU - Rachůnek, Jiří

TI - Ordered prime spectra of bounded $DRl$-monoids

JO - Mathematica Bohemica

PY - 2000

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 125

IS - 4

SP - 505

EP - 509

AB - Ordered prime spectra of Boolean products of bounded $DRl$-monoids are described by means of their decompositions to the prime spectra of the components.

LA - eng

KW - $DRl$-monoid; prime ideal; spectrum; $MV$-algebra; -monoid; prime ideal; spectrum; MV-algebra

UR - http://eudml.org/doc/248670

ER -

## References

top- S. Burris H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, Berlin, 1977. (1977) MR0648287
- C. C. Chang, 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
- R. Cignoli A. Torrens, 10.1006/jabr.1996.0278, J. Algebra 184 (1996), 604-614. (1996) MR1409232DOI10.1006/jabr.1996.0278
- T. Kovář, A general theory of dually residuated lattice ordered monoids, Thesis, Palacký Univ. Olomouc, 1996. (1996)
- D. Mundici, 10.1016/0022-1236(86)90015-7, J. Funct. Analys. 65 (1986), 15-63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
- J. Rachůnek, Spectra of autometrized lattice algebras, Math. Bohem. 123 (1998), 87-94. (1998) MR1618727
- J. Rachůnek, 10.1023/A:1022801907138, Czechoslovak Math. J. 48 (1998), 365-372. (1998) MR1624268DOI10.1023/A:1022801907138
- J. Rachůnek, MV-algebras are categorically equivalent to a class of $DR{l}_{1\left(i\right)}$-semigroups, Math. Bohem. 123 (1998), 437-441. (1998) MR1667115
- J. Rachůnek, Polars and annihilators in representable DRl-monoids and MV-algebras, (submitted).
- K. L. N. Swamy, 10.1007/BF01360284, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797DOI10.1007/BF01360284
- K. L. N. Swamy, 10.1007/BF01364335, Math. Ann. 160 (1965), 64-71. (1965) MR0191851DOI10.1007/BF01364335
- K. L. N.Swamy, 10.1007/BF01361218, Math. Ann. 167 (1966), 71-74. (1966) MR0200364DOI10.1007/BF01361218

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.